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By Francis C. Schwenk, George W. Lewis, and Melvin J. Wtmann 

The possible shock system associated with the supersonic blade ele- 
ments encountered i n  transonic-compressor rotors is reviewed. The vari-a- 
t ion of the shock shape and location w i t h  operating conditions Ls described 
qualitatively.  A shock configuration is assumed for  operation at minimum 
over-all l o s s  t o  estimate the wgnitude of shock losses. 

The minimum-loss data f o r  a large number of transonic-compressor 
rotors  wLth circular-8zc blades are tabulated, and the shock losses are 
estimated i n  most cases to be from 0.35 t o  0.55 of the over-all blade- 
element losses when the inlet relative  velocit ies  are  sonic  or greater. 
I n  many cases, estimated surface Mach numbers are high and  have a very 
large effect on the magnitude of shock loss .  Large  shock losses can be 
obtained even at relat ively low supersonic in l e t  relative Mach nuuibers 
when the surface Mach number i s  high. The Mach number levels  obtained 
indicate that flow  separation  probably always occurs at the point of 
shock - boundary-layer interaction on the blade suction surface. The 
profi le   losses  are approximated by the difference  in measured over-all 
blade-element loss and the estimated shock loss. Several parameters that 
may be indicative of p rof i le  loss are considered, b u t  no good correla- 
t i on  can be  obtained with the data used i n  this preliminary study. 
Whereas the diffusion factor developed f o r  subsonic flow does not apply 
t o  this  type of f l o w  configuration, the profi le   losses  are reasonably 
close  to  the previously  obtained band. Estimation  of the prof i le  loss 
by the use of the diffusion  factor must be considered somewhat tentat ive 
and should not be extended appreciably beyond the range of data used f n  
this investigation. 

For the design of high-pressure-ratio high-mass-flow axial-flow- 
compressor stages, accurate  information on the Losses in   r e l a t ive  total 
pressure  occurring i n  the blade rows is  required  to  predict  design-point 
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performance.  Reference I, fo r  example, shows the importance of accurate 
design Loss values  through a discussion of actual and design performance 
of a transonic-compressor rotor  having a design corrected t i p  speed of 
1300 feet per second. Gross efficiency or loss values  generally d.0 not 
suffice,  because radial var ia t ions   in  losses (or entropy) occurring Fn a 
blade row enter the radial-equilibrium  calculation of velocity and angle 
variations dowLzstream  of the blade row (ref. 2 ) .  These variations criti- 
cal ly   affect   the  performance of a high-pressure-ratio  stage and succeeding 
blade rows as well. The optimization  of  sxial-flow-compressor  designs i e  
perticulasly  important  in the supersonic-aircraft  propulsion  field, For 
such a study, knowledge  of the  factors  that influence  losses is required 
not ,only at the  design  point  but also at off-design  conditions. 

Subsonic-co ressor  design  procedures have been  based on the blade- 
element approachTrefs. 3 and 4)., and two-dimensional-cascade data supple- 
mented.  by rotor test resu l t s  were the basis for  selection of blades and 
relative total-pressure-loss  coefficients  for each  blade  element. Some 
e w l y  experiments with transonic  axial-flaw-compressor  rotors (refs. 5 t o  
9) showed that, for in le t   re la t ive  Mach numbers up t o  1.1, shock effects  
evidently were small, and the transonic cqmpressor appeased as an  exten- 
sion of subsonic-compressor  experience (ref.  4 ) .  That is, blade-element 
theory  applied, and the measured minimum loss levels depended on blade- 
loading parameters  such as diff'usion  factor (ref. 102 with no measurable 
ef fec ts  of in le t   re la t ive  Mach umber. Of course, the blade sections used 
i n  the transonic compressors were m e r e n t  from conventional  subsonic 
a i r fo i l s .  For example, one successful   a i r foi l  i s  the double-circular- 
asc   a i r foi l   ( refs .  7 t o  9).  

Some recent  results of tes t ing  compressors  having inlet re la t ive  Mach 
numbers up t o  1.3 (refs. 1, 11, and 1 2 )  showed a departure from previous 
transonic-compressor  experience i n  that the measured minimum losses f e l l  
above the range of the  &fusion-factor  correlation of reference 10. 
Similar  results were also found i n   t e s t s  of low-solidity {low chord-to- 
spacing ra t io)  corupressars i n  which the inlet relat ive Mach numbers  were 
1.1 or lower (ref 6. 13 and 14) . As reported in the preceding  investiga- 
tions, these compressms  probably represent  cases In which the effects  of 
shock waves were great enough t o  cause the depaxture from subsonic- and 
easlier.  transonic-compressor  experience. 

The r e su l t s  of references 1 and ll t o  14 lead t o  some basic  conch- 
sfons: (I) Certain phases of the  subsonic a roach t o  compressor design 
need modification in  the transonic regime; (8 a s l x d y  of the flow through 
transonic blade rows is required  to  .learn the re la t ive  raagnitu& of factors 
that affect  losses; and (3) a new or at least a modified.design loss vari- 
ation is required. 

This  report  presents some ideas on the type of  flow f ie ld  that may 
exist i n  a transonic  axial-flow compressor. BasicalJy,  the blade-element 
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approach i s  retained, and the  possible shock- and exgansion-wave configu- 
rations f o r  a coqressor  cascade m e  considered. Based on t h i s  study, 
the r e p r t  endeavors to establ ish a simple shock-wave mde l  that wXU 
approximate the shock loss a t  the design or minimum-loss incidence  angle. 
Besides this, the model w i l l  provide abasis f o r  s tudies  of the  viscous 
effects  on the blade surface. 

Understanding the flow phenomena and determining  correlative param- 
e ters  f o r  the lossesxn  total   pressure i n  transonic compressors require 
a knowledge of the flow  configuration. The actual physical  si tuation  in 
a compressor is so complex that it -st defies description and malres a 
quantitative  treatment  nearly impssible without  simplifying  assumptions. 
n u s ,  f o r  the study of compressor Losses, a f l o w  model i~ u s u d ~  con- 
structed by simplifying  the  actual  flow field i n  the hope that the model 
w i l l  closely  represent  the  physical  situation and provide an understanding 
of the  important  sources of and factors which cause the losses. 

Description of Flow Model 

The flow -model assumed herein is  two-dimensional. and similar to   the 
blade-element approach usually employed i n  studies of compressors {ref. 
3) . Such a model ru l e s  out  consideration of the f l o w  phenomena in   the  
blade end regions  depicted  in  reference 15. As indicated i n  some of the 
anauses  of transonic  axid-flow compressors (refs. I and LL t o  u), the 
effects  of shock waves can have some influence on the observed blade- 
element losses;  therefore,  the flow model must allaw for   the presence of 
shock waves to be more general than usual blade-element theory. 

Before  proceeding  with a discussion of the shock waves, it is impor- 
t a n t   t o  consider  the  assumption of two-dimensional  flow, since it i s  ex- 
pected that the mixed supersonic and subsonic  flow f i e l d s   i n  a transonic 
compressor will be more sensit ive t o  three-dimensional  effects than a 
completely  subsonic flow. The two-dimensional-flow hypothesis  simplifies 
the analysis greatly and allows fo r  the comparison of transonic blade- 
element data with subsonic compressor and cascade data. 'Brough such 
comparisons, it may be poss€ble  to test the hypothesis and t o  discover 
s i tuat ions  in  w h i c h  three-dimensional  effects are important enough t o  be 
considered.. 

Shock-wave configurations. - Shock-wave configurations  for  cascades 
of blades m e  shawn in  references 16 to 18. The necessary  extensions and 
md.ifications to the flow model for transonic-compressor  blade  elements 
are  discussed i n  this section. 
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The shock pat tern  in  a supersonic  cascade of compressor blades Con- 
sists of two parts, as shown in   f igure  1. The f i rs t  is that portion of 
a shock wave contained in   the  blade passage (from blade suction surface 
t o  stagnation streamline) and will be referred t o  as a paasage shock; the 
shape and location of this passage shock depend on the blade geometry and 
the operating  conditions at a given  relative Mach  number. The second is 
tha t  portion of the shock extending from stagnation streanline t o  i n f i n i t y  
upstream of  the  stagger  line and w i l l  be referred to as EL bow  wave; the 
location and strength of the bow wave depend on blade Leading-edge thick- 
ness and operating  conditions at a given re la t ive  Mach  number. As shown 
i n  figure 1, the bow waves are normal t o  the flow at the stagnation 
streamline and approach the slope of a Mach l ine f o r  tbe upstream 
conditions. 

k 
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The shock-wave configuration is  shown i n  detail i n  figure 2. The 
entering flow {a) encounters the shock wave at the  point b, where the 
wave is normal t o  the stagnation  streamline. The portion of the shock 
wave near the stagnation  streamline is a strong wave, and the  flow is 
reduced t o  subsonic  relative  velocities. The f l o w  i s  then expanded around 
the leading edge of the rotor  blade (c) t o  rather high supersonic  veloci- 
t i e s .  The first expansion wave (c-c')  represents  the f l o w  at a Mach  uum- 
ber of 1.0. The final expansion wave s h a m  originating a t  the leading 
edge (c-c") is  the Mach l ine  flow as expanded para l le l  to  the  suction 
surface at the leading edge. The flow  then  continues to   accelerate  and 
flow paral le l   to   the  suct ion surface, and the expanslon waves that i n t e r -  
sect  the bow wave reduce the shock strength and cause the bow  wave t o  
become a Mach line.  m 

The flow along the next  stagnation  streamline (a) can now be followed . 
through the flow f i e l d  established by the l m r  blade. The stream i s  
deflected upward slightly at the point e as it passes  through the bow 
wave, depending on the slope of the bow  wave at this point. The stream- 
l ine  i s  then  deflected downward by the expansion system {e t o  f) . The 
flow direction is  thus  established by the expansion system that originates 
on the  suction  surface of the previous  blade. This stagnation  streamline 
then  encounters the bow  wave a t  the point f ,  and the flow at the lean@: 
edge of the next blade (g) is similar t o  that on the lower blade. As 
noted on the figure, a value h is assigned t o  the def1ectio.n  distance of 
the st-tion streamline from a continuation of the blade mean  camber 
line. The deflection h of this  streamline  varies  with the contained 
supersonic flow field. 

I n  order to maintain  identical  conditions entering each blade of the 
blade row, the compression i n  a given bow  wave and the expansion system 
that passes ahead of the next bow  wave (fig. 2) must be of equal strength. m 

Thus, the  properties of the gas  along  each bow wave and the  entrance con- 
dit ions  are  the same for each blade. - 
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- Figures 1 and 2 present the shock configurations  for a given  operat- 
ing  condition. It is expected that changes i n  operating  conditions will 
alter the shock waves from those shown. This subject i s  considered Later. 

Conditions downstream of cascades of blades. - As in   s tudies  of low- 
speed-cascade flow  (ref. 191, the nature of the flow at the out le t  of a 
high-speed blade row can be discussed. For  comparison  purposes, a typ ica l  
var ia t ion  in  total pressure damstream of law-speed cascade i s  shown i n  
figure 3. Defined wake and free-stream  regions are indicated. The 

(0 

r J  
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M total-pressure-loss  coefi'icient w is  defined as 

- 

where symbols are defined i n  appendix A. The numerakr of equation (I) 
is  the difference between the ideal o u t l e t   t o t a l  pressure and the mass- 
averaged total pressure ?,. (The ideal outlet  total pressure  equals  the 
i n l e t   t o t a l  pressure for EL statLonary blade row.) For low-speed.  compres- 
sor rotors, it i s  assumed that the circumferential  variations & re la t ive  
total   pressure at the  out le t  of a blade row are a6 shown i n  figure 3. 
Data computed from hot-wire-anemometer measurements outside the rotor 
housing  boundary-layer  region (ref. 15) support this assumption for a 
rotor  blade element operated w i t h  in le t   re la t ive  Mach numbers equal t o  
approximately 0.8. 

1 

On the basis of the shock configurations  given i n  figures 1 and 2, a 
variation of re la t ive  total   pressure damstream of a rotor blaae element 

The passage shock (f to f i n  fig. 2) decelerates the flow from supersonic 
to subsonic  velocities, and therefore some losses i n  total pressure me 
expected from this shock wave. Furthermore, since tlie Mach number upstream 
of the passage shock varies d o n g  the wave, EL circumferential   variation  in 
out le t   re la t ive  total pressure in aildition to the blaae wakes i s  expected. 
Figure 4 i l l u s t r a t e s  the passage shock loss qualitatively.  Also shown i n  
figure 4 i s  the complete va r i a t ion   i n   ou t l e t   t o t a l  pessure including 
blade wakes. Such variations have  been observed i n  unpublished data taken 
at the NACA L e w i s  laboratory w i t h  the hot-wire anemometer. Loss coeffi- 
cients (eq. (I)) determined for  rotors having  supersonic in l e t  relative 
Mach numbers, of course, represent the circumferential  variation of total 
pressure in   f i gu re  4 as some average loss i n  total   pressure.  The problem, 
then, i s  to  separate  the  over-all Loss coefficient  into  the major consti t-  
uents: the shock losses and the  losses due t o  viscous  effects on the blade 
surfaces. 

a can be deduced for the case of supersonic inlet relative Mach numbers. 

1 

* 
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Variations  in  the Flow Model w i t h  Operating  Condition 

The flow model, i n  particular  the shock configuration, ha6 been 
described  for one operating  condition.  Variations  in  operating  conditions 
will now be discussecl %o indicate, at least qualitatively, that the flow 
model will s h o w  some of the  trends  observed  in compressor tests. In  ad- 
dition, t h i s  discussion w i l l  provide a basis for establishing the shock 
configuration  for a p a t i c u l a r l y  important  operating  condition (maximum- 
efficiency or design  operation of a blade element) . 

bb 

Typical performance characterist ics.  - Before  proceedlng with a a s -  
cussion of the f l o w  model at various  operating  conditions, it will be of 
some help to consider the performance characterist ics of a typical corn- 
pressor  rotor row operating with supersonic inlet   re la t ive  veloci t ies  
over a portion of the blade span (f ig .  5(a)). Operation with constant 
blade  speed will be discussed. Within the limits imposed by a test rig,  
a rotor  will exhibit choking at low back pressures. Rotor  choking i s  
ident i f ied as the  condition  for which changes i n  back pressure  can  occur 
with no a l te ra t ion  of the  rotor   inlet  flow  (point A, f ig .  5(a)). Up t o  
a certain  point,  then,  increasing  the back pres.sure above the  lowest  value 
available will cause increasing  total-pressure  ratio and  compression 
wlthin  the  rotor at a nearly constant weight flow. A t  some point (B, 
f i g .  5 ( b ) ) ,  a maximum rotor  efficiency i s  obtained. A t  hlgher back pres- 
sure (point C,  f i g .  5 ( c ) ) ,  more compression will occur  wlthin  the rotor 
and the w e i g h t  flow will decrease u n t i l  further increases  in back pressure 
may be inadvisable because of the appzarance of s t a l l ed  or unstable flow. - 

Changes i n  shock-wave configuration  with  operating  condition. - The 
shock-wave configuration  for  very low back pressures  (rotor choking) is 
a h m   i n  figure 5(a).  Since very l i t t l e  compression is  required over the 
blade row, the passage shock wave moves back along the suction  surface 
toward the t r a i l i n g  edge and becomes oblique t o  the flow. The bow wave 
i s  c lose   to  the leading edge of the blade; the displacement  upstream is 
due mainly t o  the leading-edge  thickness. Far operation with low back- 
pressure and high weight  flow, the  inlet  flow i s  parallel t o  or  at a 
slight negative  incidence  relative  to the suction  8Wface.  In  addition, 
the pressure  surface  creates only a small deflection of the stream, so 
that a. supersonic  region may form on the  pressure side of the blade. 
Therefore,  there is a possibi l i ty  of a shock and boundary-layer inter-  
action on the  pressure  surface. The pressure-surface shock wave may be 
induced by either the back-pressure  requirements  or the coalescence of 
compression waves produced by a concavity of the  pressure  surface. 

L 

" 

The Mach  number along  the  suction  surface upstream of the passage 
shock wave  becomes-w%-y high because of the large amount of supersonic 
turning, and flow separation may occur and cause a forked shock wave. 
I n  some cases, depending on the element geometry  and three-dimensional 
aspects o f  the Ilow,-the passage shock wave  may pass entirely behind the 
blade row at low back pressures. 
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Now consider  the  effect on the flow m o d e l  as the back pressure i s  
increased  (fig.  5(b)) so that the upstream conditions, weight  flow, and 
the bow wave do not change significantly.  The downstream pressure  in- 
crease moves the shock wave forward along the suctian  surface i n  order 
that the necessary compression  can occur.  Operation as shown i n  f e 
5(b) would represent maximum pressure  ratio  at  m a x i m u m  weight flow 7 choke) 
for  a compressor rotor. As the back pressure is increased further (fig. 
5 (c) )  it is necessary that the passage shock and bow wave  move away from 
the leading edge of the blades  to  achieve  the  required  static-pressure 

m r i s e .  The compression  upstream of the leading edge increases and causes 
d an increased  incidence angle. !ELUS, the f low model allm a range of m 

operation  similar  to that experienced i n  transonic-compressor rotors.  

Losses 

The basic purpose of constructing a flow model i s  t o  make possible 
the determination of the  flow  variations with operating  conditions and 
the factors  affecting losses. Two sources of shock loss can be considered, 
the bow  wave and the  passage shock. Closely  associated with the  passage 
shock wave i s  the loss due t o  the shock - boundary-layer interaction and 
subsonic  diffusion from the passage shock t o  the discharge  conditions. 
These losses  ere  referred to as the profile  losses,  since they arise ' 
mainly from the  viscous  effects on the blade boundaries. 

- Division of the over-all.  blade-element Loss in   to ta l   p ressure   in to  
three major categories  facil i tates  discussion of the variation of losses 
with incidence  angle ar -rating  conditions. That is, it is  possible 

the assumed flow model and t o   c o m e  the deduction w i t h  measured varia- 
t ions of loss with incidence angle. Such a comparison t o  a cer ta in  degree 
will indicate whether the flow model i s  reasonable. 

- to deduce a qualitative loss variation with operating condition based on 

Measured blade-element loss m i a t l o n s .  - A typical  measured varia- 
t i on  of ro tor  blade-element losses with incidence  angles i s  shown i n   f i g -  
ure 6(a) f o r  a blade section having  supersonic inlet re la t ive  Mach num- 
bers. Such loss variations have been  observe& i n  t e s t s  of several tran- 
sonic compressors operated a t  a constant blade speed.  Figure 6(b) is  
similar t o  figure 6(a) with back pressure as the independent variable. 

Note that the  sol id   l ine  in   f igure  6(a)  shows a rise i n  loss as 
operation is changed f r o m  point B t o  A (reduction  in back pressure) with 
l i t t l e  change i n  incidence angle. Point B represents the minimum-loss 
condition  for the solid  line.  Points A and A '  indicate  possible loss 
variations at Low back pressures. I n  some compressors, a reduction  in 
back pressure from point B causes an increase (A) i n  measured losses with 
little change in  incidence  angle, and some data show 8. reduction  in  losses 
( A * )  at the low back pressures.  Since  operation of a compressor at either 

- 
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point A or A' i n   f i gu re  6 (a) ie  usually  not desirable because of low work 
input and efficiency,  point B (operation with back pressure) is generally 
the maximum-efficiency or the design  point, which also i s  usually near 
the lowest  incidence  angle for   the blade element.  Therefore, the shock 
configuration  for a moderate back pressure  (fig.  5(b) ) is assumed t o  be 
representative of the shock wave at the maximum-efficiency operating 
condition. 

- 

Blade-element loss  variations as given by flow model. - With a shock 
configuration  established  for maximum-efficiency operation, it i s  now 

* tt 
possible  to  consider the variation of the three major categories of Losses 6 
{bow wave, passage shock, and profile  losses) with operating  condition. 

A q u a l i t a t i v e   m i a t i o n  of the  three  types of losses with back pressure 
f o r  constant blade speed is s h a m  i n  figure 7. In  addition, the assme& 
var ia t ion   in  the shock configuration and the corresponding over-all per- 
formance characterist ics are shown i n  figure 7.  

Bow-wave losses:  In  reference 16 the losses  associated  with  the 
bow wave (over the region from point b, c ' ,  e, t o   i n f in i ty  on f ig .  2) 
were  computed as a function of in le t   re la t ive  Mach nmiber. The magnitude 
of these  losses was small when the required  displacement upward from the 
bar wave t o  the blade  leading edge (shown as h i n   f i g .  2) w a s  small. 
The displacement h i s  zero  for  the  case of zero  leading-edge  thickness 
and flow entering  parallel  t o  the suction surface. It is fur ther  noted 
i n  reference 16 that the  losses of the bbw wave are  concentrated  near the 
stagnation  streamline; 94 t o  96 percent of the bow wave losses are located 
within 4 or 5 times the displacement h from the  point b i n  figure 2.  

- 
As shown in  f igure 7 {a}, very low  bow-wave loss occurs at maximum- 

efficiency  operation  (point B), because the  incidence  angles are usually 
low and the displacement h of the stagnation  streamline is  small. Since 
upstream conditions do not mange, the bow-wave loss is constant for Inw- 
back-pressure  operation (from point A t o  point B). A t  higher back pres- 
sures (between B and C ) ,  the bow-wave losses  increase as the back pressure 
causes the incidence angle and the compression i n  the bow wave t o  increase. 

Passage shock loss: The passage  shock-loss  variation with back 
pressure (fig. ?(b}) can m w  be considered. The variation of the passage 
shock loss with  reducing back pressures  could  follow a number of paths 
{increasing,  decreasing, or some comblnation thereof), depending on the 
blade  shape, solidity,  stagger  angle, and the three-dimensional  aspects 
of the  flow. The envelope of these possible  paths is  indicated  in   f igure 
7 (b) , If it i s  presumed that the  intersection of the passage shock with 
the  suction surface moves t m d  the t r a i l i n g  edge for a reduction  in 
back pressure,  passage shock losses m i g h t  increase because the shock 
occurs at higher Mach numbers. On the  other hand, the effect of higher 
Mach numbers is counteracted by the obliquity of the shock wave. The 
occurrence of pressure-surface shock waves at low back pressures . 
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(fig.  7(e) ) would add t o  the passage  shock losses.   In  blade  elemnts 
having  high stagger angle and low solidity,   the passage shock may move 
d o m t r e m  of the t r a i l i n g  edge at low back pressure. Then, if the flow 
along the pressure  surface is wholly supersonic, low passage shock losses 
could resu l t .  

A t  back pressures greater than at point B, the motion  of the passage 
shock toward the  leading edge may cause the shock t o  occur at lower Mach 
numbers.  Along with this ef fec t  is a reduction  in inlet re la t ive  Mach 
number (for  constant-speed  operation) . €bwever , the allfed increase  in 
incidence angle is  in  the  direction of increasing the Mach number upstream 
of the passage  shock.  Therefore, as a best  qualitative  estimate, the 
passage shock loss is  shown as a constant  for back pressures  greater  than 
the maximum-efficiency back pressure  (point B) . 

Profi le  losses: Profile  losses (defined as other  than shock losses) 
r e su l t  from f r ic t ion   forces  and the growth of boutxbzy layers associated 
with the diffusion  process on the blade  surfaces. For a blade element 

' with supersonic  or high subsonic in l e t   r e l a t ive  Mach nmibers, the shock 
waves contribute  importantly to  the  dFffusion process and the boundary- 
layer growth. As shown f o r  the  passage shock losses, there are several Y poss ib i l i t i es   for  the variation of prof i le   losses  at low back pressures 

8 (fig. 7(c) 1. For the blade-element  geometries that allow the passage 
shock waves t o  pass downstream of the   t ra i l ing  edge, the prof i le  losses 
would be l o w  (point A, f i g .  61. Blade elements i n  which shock and - boundary-layer interactions occur on both the  suction and pressure sur- 
faces may have higher prof i le  losses at low back pressures  (point A, f i g .  
6) than  at  the maximum-efficiency back pressure  (point B) . 

AB back pressure i s  increased above the value f o r  m a x i m u m  efficiency, 
the diffusfon  damstream of the shock wave {subsonic  diffusion) and the 
profi le  losses w i l l  increase. The var ia t ion  in   prof i le  loss with back 
pressure shown in   f igure  7(c)  is expected t o  be much greater than m i g h t  
be  observed i n  low-speed cascades (ref. 19).  Poor boundary-layer  condi- 
t ions (high momentum thickness and f o r m  factor)  downstream  of a shock and 
boundary-layer interaction  should result i n  a large var ia t ion  in   prof i le  
loss with changes in the amount of subsonic  diffusion. 

Over-all blade-element loss: The variations of the three  sources 
of loss with back p res su re   a r e   qd i t&t ive ly  considered. The sum of these 
loss factors  will be presumed t o  be the over-all  loss as shown in figure 
?(a). It should be remembered that this  discussion of loss variations is 
purely  qualitative, and shif t ing the loss variations m q y  change the mer-  
a l l  picture.  In  addition, some interaction between the loss factors can 
be expected. Also, the range of back pressure  available between choking 
and unstable  operating  conditions may be res t r ic ted  in various rotors. 
For these reasons, the shape of the over-all  loss curve m a y  vary f r o m  one 
rotor  to  another. 
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The flow  configuration  described seems t o  satisfy the necessary con- 

di t ions of a flow model. The model is flexible enough t o  give the v w i -  
ation of operating  conditions. that have been  observed. Qualitatively, 
the  over-all  loss variation u i th  operating  conditions seems t o  f i t  that 
experimentally  observed in  transonic compressors {fig. 6 ) .  Although the 
model i s  complicated; simplifications may be available that allow e s t i -  
mation of the 1OSS level  of the  various  factors  involved. The following 
sections w i l l  consider the approximate magnitude of the various loss 
factors  near the condition of  maximum-efficiency back pressure  (point B, 
f i g .  7 ) .  

* 
t; c c? 

ESTIMATED SHOCK LOSSES AT MAXI" ELFSIENT EFFICIENCY 

I n  this  preliminary  study,  the shock losses f o r  the maximum element 
efficiency of several compressors are computed from a simplified shock 
configuration,  and the resu l t s  me compared w i t h  wasured  losses. The 
maximum efficiency is  considered  because af i ts  importance in   es tabl ishing 
design-point performance of a blade row. 

Experimental Data 

Shock losses were computed for the  axial-flow  transonic-compressor 
rotors  l is ted in   t ab l e  I. Table I gives the important  rotor geometry and 
references  describing the rotors   in  detail along w i t h  a letter designation 
fo r  each  rotor. For simplicity,  only data for  double-circular-arc blade 
sections  are  included  in this analysis, although  other types of a i r f o i l s  
could be analyzed by the methods given  herein.  Blade-ebment performance 5 

data are   tabulated  in  table II f o r  minimum-loss operation (which usually 
corresponds with maximum element efficiency,  point 3). The numbers fol-  
laring  the  rotor-designation  letters  identify the radial.  location of the 
blade-element as a percentage of the passage height f'rom the outer wall. 
Data points were selected. from curves of over-811 loss coefficient  against 
incidence  angle  determined f o r  constant-speed  operation of each rotor.  

I n  table II the incidence angles are converted t o  incidence angles 
measured r e l a t i v e   t o  the blade suction  surface i,. It can be  observed 
that is i s  slightly  negative  for  these data. According t o  the previous 
discussion, this condition of negative  incidence  should result i n  low 
bow-wave losses.  Therefore, bar-wave losses  can be neglected. 

Simplified Shock Model - 
Since  the strength of the passage shock wave varies across the space 

between the blades, the  determination of a shock loss requires an aver=- 
ing process. If & mass-averaged shock loss i s  desired, the shape of the 

- 
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passage s h ~ c k  wave, the  mch number,  and the f l o w  angle upstream of the 
shock are  required. For this preliminary  study, it is assumed that the 
average  passage shock loss can be approximated by the normal shock loss 
computed f o r  a Mach number which is the average of the end-point Mach 
numbers. The  one end-point Nch number (at  point f in f i g .  2)  is assumed 
t o  be the measured i n l e t  re la t ive  Mach  number Mi. The other end-point 
Mach number (called the peak suc t ion-sur face  Mach number q) i s  computed, 
by means of the Prandtl-Meyer  expansion equations, from the i n l e t  re la t ive  
Mach  number and the  difference between the re la t ive  f l o w  angle at the i n l e t  
and the  angle of 8 tangent to  the  suction surface at point f' in figure 
2 .  These assumptions reduce  the problem t o  a determination of the  inter-  
section of the passage shock with the suc t ion  surface (poin t  f', f i g .  2 ) .  
As sham in  figure 8, the  point at which the  passage shock intersects  the 
suc t ion  surface is assumed t o  be located by a l i ne  drawn  normal t o  the 
midchannel streamline (the mean camber l ine)  from the leading edge of the 
yper   blade.  The geometry and equations f o r  locating  point f ' f o r  double- 
circular-arc  blades  are  given  in appendix B. 

Magnitude of Shock losses 

The values of peak suction-surface Mach number, passage  shock-loss 
coefficient, and percent of over-all loss a t t r ibu ted   to  shocks for   the 
transonic-compressor rotors  are given i n  table II: as computed by the 
method given in  the  preceding  section and appendh B. A quick  comparison 
of percent shock losses fa r  the vwious  rotors  can be obtained from f ig -  
ure 9(a), where the r a t i o  of shock-loss coefficient t o  over-all loss 
coefficient is plotted  agafnst  over-all loss coefficient  for the t i p -  
section  elements (13 percent and l e s s  of the passage height from the 
ro tor   t ip )  . It is  apparent from figure 9 (a) that computed shock losses 
were from 0.2 t o  over 1.0 of the to ta l   l o s ses  measured. The few data 
points fo r  which the computed shock losses axe greater than the measured 
loss are  considered later. Most of the rotors  considered have between 
0.35 and 0.55 of the t o t a l  loss i n  the form of shock losses as estimated 
from the  simplified shock model. A similar pldc is shown i n  fFgure  9 (b) , 
i n  which all midpassage elements are  considered {greater than 16 percent 
of passage height from the outer wall). Even at these radii the shock 
losses em? still high, f a l l i n g  between 0.3 t o  1.0 of the total loss. 

Whereas early  transonic-canpressor  research indica*d that rotors of 
this type were a simple  extension from subsonic compressors, numerous 
experiments have resul ted i n  losses that could  not be correkked by the 
previously devFsed methods. To i l l u s t r a t e  this pint,-consider  the  plot 
of f igure l O ( a ) ,  whae the over-all loss coefficient a, fo r  the measured 
tip-element data given in   t ab l e  II is  plotted against diffusion  factor 
D, a b l a d e - l w n g  parameter (ref. 10). The dotted  l ines shown represent 
t?x loss band given in  reference 10. For these  transonic-compressor 
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rotors a large number of data points f a l l  above the 106s band, and the 
diffusion  factor D, does not seem t o  be a good method of predicting 
over-all  losses. The previous parwaph  ind ica tes  that a considerable 
portion of the mer-all loss i s  i n  the form of shock losses, which the 
diffusion  factor D would have no way of indicating. It seems reasonable 
to   subtract   the  computed shock loss from the over-all loss coefficlent, 
the difference  being termed the profi le  loss. 

Profile loss i s  plotted  against  diffusion  factor D i n   f i gu re  l O ( b )  . 
Profile  losses  seem.to f a l l  more nearly  in  the band of data given i n  ref- 
erence 10. Whereas the diffusion  factor D w a s  devised to correlate 
losses  for a given  velocity  distribution on a compressor blade, it seems 
to  indlcate  the level  of prof i le  losses obtained with the velocity dis-  
t r ibut ion  resul t ing from a shock and subsequent Wfus ion .  The correla- 
t ion  of profile  losses is discussed i n  a later section. OP most impor- 
tance, however, is the  fact  that when shock losses are subtracted from 
the to ta l   losses  the remainder is i n  reasonably good agreement with the 
expected  over-all  losses  without shock; thus,  the  general magnitude of 
shock loss  computed  by t h i s  approximate method may be of the proper order. 

Similarly, the over-all loss coefficients measured for other than 
t i p  elements for  these transonic-compressor rotors  are  plotted  against  
loading parameter in figure l l(a) .  his figure includes  those data avail- 
able from table  11 where re la t ive  inlet Mach numbers me  sonic  or greater. 
Also shown i s  the typical  variation of low-speed-cascade losses with dif- 
fusion  factor  (ref. 10). Again the diffusion  factor D does not seem t o  
correlate  the magnitude of over-all losses. However,  when the shock losses 
me subtracted from the  over-all Loss to   ob ta in  the estimated profile 
losses, the data a r e - i n   b e t t e r  agreement with the low-speed-cascade data, 
as shown in   f igure  l l (b) .  

- 

Factors  Affecting  Shock-bss Magnitude 

It has been &own that shock losses  constitute a sizable  portion of 
the over-all losses   in  a transonic-compressor rotor. Thus far, this 
report has presented shock losses only for  specific  cases; however, f ig -  
ure 1 2  a v e s  a systematic  variation of  computed shock losses with inlet 
re la t ive Mach  number Mi, peak suction-surface Mach  number MA, and super- 
sonic  turning  angle (the amount of turning from t b  upstream flow direc- 
t ion   to   the   in te rsec t ion  of the passage shock wave and the suction 
surface) . 

The curves of figure 1 2  were calculated  from the tables of reference 
20 by averaging the inlet re la t ive  Mach  number M; and  peak suction- - 
surface Mach number MA to determine a shock-loss  coefficient. In  addi- 
tion, the variables  given.in  figure 1 2  axe independent of a specific - 
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cascade geometry o r - &  blade shape. For- the  types of transonic compressors 
generally designed, the   in le t   re la t ive  Mach  number i s  r e s t r i c t ed  t o  a 
smaller range  than  the peak suction-surface Mach number. 

Several examples are  given  to  indicate  the  use of figure 12. Con- 
sider a blade element designed f o r  an  inlet   re la t ive W h  number of 1.0. 
An increase  in peak suction-surface Mach  number from 1.5 t o  1.8 causes a 
threefold  increase  in  shock-loss  coefficient. A s i m i l a r  increase  in 
shock-loss  coefficient  occurs f o r  an  increase  in   inlet   re la t ive Mach nun- 
ber from 1.0 t o  1.4 when the peak suetion-surf ace Mach number is fixed at 
1.5. These examples involve, intrinsically,  variations  in  blade  loading, 
work input, blade shspe, and sol idi ty .  Therefore, figure 1 2  does not 
preseht the entire  process of selecting a compressor design  point. It 
does provide  the basis for  estimating shock losses   in  the design of com- 
pressors. The effect  of shock losses on the efficiency of blade elements 
can  be  found  using figures 24 and 25 of reference 4 and figure 12  of this 
report. 

Figure 12 shows that, ui th  re la t ive  inlet Wch numbers usually COR- 
sidered  in  transon$c compressors (about 1.2) and w i t h  surface Mach numbers 
of 1.7 (as encountered i n  many of the data used herein), the computed 
shock-loss  coefficient is about 0.1. This shock loss is  of the same order 
of magnitude as the wfdth of the correlation band obtained  for  the diffu- 
sion factor  in  reference 10. This t o  some extent  explains why references 
ll and 13 indicate that, f o r  a surf ace Mach number of approximately 1.7, 
losses  considerably above the  aiffusion-factor  correlation band could  be 
expected. The ctlTves of figure 1 2  indicate how shock losses vary at a 
given r e l a t ive   i n l e t  Mach  number and that the shock losses are  higher than 

L the normal shock losses at that Mach  number. For example, fo r  the rela- 
t ive  inlet Mach  number of 1 . 2  the normal-shock-loss coefficient would be 
relat ively low (% = 0.015); but, with a peak suction-surface Mach number 
of 1..7, the computed shock-loss coefficient would be approximately six 
times that credi ted  to  a normal shock at the  re la t ive inlet Mach number 
of 1.2.  Thus, inlet re la t ive  Mach number is  not of itself an  indication 
of the magnitude of the shock losses. 

- 

Effect of supersonic  turning. - The curves at the top of f igure 1 2  
have been constructedto  indicate  the  effect  of suction-surface  turning 
in  the  supersonic  region on shock-loss coefficient. These curves show 
the supersonic turning required t o  increase the re la t ive   i n l e t  Mach  number 
t o  the  suction-surface Mach number indicated. Consider the  point of 100 
turning with the r e l a t ive   i n l e t  Mach number of 1.0. For this condition 
the computed shock-loss  coefficient would be approximately 0.02. If this 
10' of supersonic  turning were maintained with the r e l a t ive   i n l e t  Mach 

crease approximately  seven times. Therefore, blade rows that are expected 
to  operate at these high re la t ive  inlet Mach nmibers m u s t  u t i l i z e  a much 
lower suction-surface  turning  in the supersonic  region  (forward  portion 

- number increased to 1.4, the computed shock-loss  coefficient would in- 



14 NACA RM E57A30 

of the  blade)  than  those  operating at low relat ive inlet Mach numbers; 
and, even with large  decreases i n  supersonic turning, an  increase  in 
shock-loss  coefficient must be expected with increasing  relative  inlet  
Mach numbers. For the example stated, a decrease i n  supersonlc  turning 
from loo t o  lo must accompaq the increase i n   i n l e t   r e l a t i v e  Mach number 
from 1.0 t o  1.4 t o  maintain a constant shock-loss coefficient. 

A low supersonic  turning  angle can be achieved for  double-circular- 
arc a i r f o i l s  with l o w  camber angles and thicknesses  operating at low 
incidence  angles. P?, at high inlet relat ive Mach numbers, a l o w  camber 
angle is not  feasible because of work-input requirements, blade sections 
different  from the double-circular-asc airfoil must be considered if peak 
suction-surface Mach numbers and shock losses   are   to  be limited. A de- 
s i r ab le   a i r fo i l  could have a f la t  suction  surface  extending from the 
leading edge t o  (or  nearly  to) the expected  intersection of the passage 
shock wave with the suction surface as suggested in  reference 17. Whereas 
such a blade shape would  minimize the shock losses, the effect on prof i le  
losses is unkaown. 

Effect of aolidity.  - Suction-surface turning angle  in the supersonic 
region is influenced. by blaae camber, thickness,  stagger  angle,  and  solid- 
i t y   f o r  a c e r t a i n   a i r f o i l  type.  As m i l lus t ra t ion  of the effect  of 
solidity,  the rotor  of reference 13 (double-circular-arc airfoils) indi- 
cated a suction-surface turning i n  the supersonic  region  (as calculated 
by the simplified shock model) of approximately 1l0 at a sol idi ty  of 1.04. 
As the sol idi ty  w a s  decreased t o  approximately 0.88 wlth the blade camber 
remaining the sam, the  suction-surface  turning  angle was increased t o  
approximately 14O. As the sol idi ty  was further  decreased  to 0.66, the 
suction-surface  turning i n  the supersonic  region was about 19O. These c 

points are indicated  in  figure 12. mer imenta l   da ta  were obtained  for 
a l l  th ree   so l id i t ies  at a re la t ive   in le t  Mach  number of approximately 
1.1. The curves of figure 1 2  indicate that the computed 8hock-loss  coef- 
f ic ien ts   a re  appraximately 0.055, 0.075, and about 0.120 for  the  solidi-  
t ies 1.04, 0.88, and”0.66, respectively. This is indicative of the meas- 
ured variations of losses  with  solidity that were obtained  in the rotor  
tests (ref. 13). 

- 

Three-dimensional effects.  - An indication of possible three- 
dimensional effects on passage shock losses may be deduced from the data 
i n   t a b l e  II. Four different  rotors (H, I, N, and Q) have a contoured 
t i p  Over the rotor.  (Rotors R and S are lower-solidity  versions of 
Q) . Of these,  the  rotors N and Q have .mealjured to ta l   losses  less 
than  the  passage shock losses computed  by the methods of this report. 
By contouring the rotor   t ip ,  some three-dimensional compression (reduction 
i n  streamline  spacing) of the  supersonic flow  can  be obtained,  resulting 
i n  a lower local  Mach number than  that  obtained i n  the  simplifled two- 
dimensional  solution. If the flow entering  the  rotor is conq?ressed in 
this manner, a two-dimensional solution  could  overestimate the surface - 
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Mach number Mi and passage  shock-loss  coefficient.  In this report, 
comparison of rotors  M and N is particularly graphic. Both rotors 
are   ident ical  except that rotor  M has a constant-radius  tip  and  rotor 
N has a contoured t i p .  As reported i n  reference 21, which presents the 
comparative resu l t s  of testing rotors M and N, the reduction i n   t i p -  
region  losses accompanying the contouring of the t i p  could not be accounted 
f o r  s o l e l y  on the basis of a reduction i n  blade loading. It can be spec- 
ulated that contouring the t i p  of rotor  N reduced the shock losses. 
The f ac t  that the computed shock losses   for  some rotors  w i t h  contoured 
t i p s  (H and J) did not exceed the measured to t a l   l o s ses  does not neces- 
sari ly  invalidate the idea that a t i p  contom  can be used t o  reduce  shock. 
However, it may be concluded that, t o  be effect ive,   the   t ip  contour 
must be properly shaped. 

The previous  discussion has dealt with factors  affecting shock losses 
and an  approximate magnitude of shock losses. It w a s  assumed that the 
over-al l   losses   in  a compressor blade element could be divided  into three 
main pa r t s  at the maximum-eff iciency  point : (1) bow-wave losses , wbich 
were considered  negligible (2) passage shock losses, which i n  effect are 
a free-stream loss, and (31 losses related t o  the blade profile.  

Interaction of Shock and Boundary Layer 

The profi le  losses have usually  been  considered to be related t o  the 
boundary-layer growth on the suction  surface  of the blade. Tbis growth 
of boundary layer may be due to the adverse pressure gradients  through 
normal diffusion  or the interaction of the shock  and boundary layer. 
The previous  section has shown tha t  the flow Mach number at the shock 
may be high. A t  these high Mach numbers boundary-layer  separation at 
the shock may be inevitable,  as indicated by references 22 and 23. The 
conditions of the boundmy layer upstream of the shock are not known. E 
the shock is moved w e l l  forward, it is possible that the boundary layer 
remains laminar to the shock; whereas, if the shock is w e l l  back on the 
blade, it is  possible that the b.oundary layer is turbulent. With either 
type of boundary layer, however, the pressure  r ise due t o   t h e  shock is 
fe l t  forwwd  of the shock i n  the boundary layer. With a laminar boundary 
layer, the pressure rise is  fe l t  a considerable distance forward; the 
boundary layer  thickens and the mainstream is  deflected a- from the 
blade surface, r e su l t i ng   i n  the compression mves shown i n  figure 13(a). 
These compression waves coalesce  into a normal  shock some distance away 
from the suction  surface. It is interesting t o  note that the loss i n  
total   pressure over this series of compression waves may be less than 
the corresponding compression over a normal shock. A similar f l o w  
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pattern i s  observed i f  the boundary layer i s  turbulent. However, i n  this - 
case the static-pressure rise is not f e l t  &B far forward. Compression 
waves are also noted.  outside -the turhuSent boundary layer,  but t h e y  ex is t  
i n  a smaller region. 

O f  most concern must be the fac t  that, for  either type of boundary 
layer, flow separation probably exis ts  near the shock plane. Thus, the 
factors  affecting this flow separation must be considered. O n c e  the 
mainstream flow  leaves  the  suctiQn  surface, two effects  are avai lable   to  
limit the amount of sepmation.  First,  the  pressure  surface of the upper 
blade will cause the stream t o   t u r n  toward the  suction  surface and limit fi 
the extent of the separation. Secondly, local  conditions of choking may 
limit the magnitude of flow  separations. Thus, the s ize  of the separated 
region would not grow without limit. It I s  possible that, under some 
condition of  low back pressure, the flow may reattach to the blade s u r -  
face  resul t ing  in  local expanslons  and compressions as shown i n  figure 
13(bj, or the  flow may continue  sepmated  throughout  the  blade row. Thus, 
the flow model cannot expl ic i t ly  be defined far the flow i n  this region 
at the  present time . 

k 

. "" 

Suction-Surface  Velocity  VarFations 

The flow model f o r  transonic-compressor  blade  elements  indicate8 
that the boundary layer on the suction  surface i s  the mJor contributor 
to  the  profile  losses  for  operation at maximum-efficiency  and higher 
back-pressure  conditions. As an extension of the previous  discussions, 
it is  possible t o  deduce a typical.  velocity  variation along the suction 
surface of transonic  blade  elements.  In  addition, the origin of profile 
losses  can  be  considered i n  detail. 

For convenience, the flow along the suction surface can be divided 
into  three  regions as shown i n  figure 14. I n  the f i rs t  region,  near the 
leading edge of the blades, the velocity  outside the suction-surface 
boundary layer is supersonic, and the flow is accelerating.  In  spite of 
the high  velocities, the  prof i le  loss generated i n  this region is probably 
smaJl because of the favorable  velocity  gradient. There is the possibil- 
i t y  (depending on the free-stream  turbulence)  that the suction-surface 
boundary layer is laminas i n  t h f s  region, because the accelerating flow 
f i e ld   t ends   t o  maintain 8 laminar  layer. 

I n  the second  region,  the  velocity  vmiations are influenced largely 
by the shock configuration. A short distance upstream of the shock, the 
boundary layer  senses the pressure increase Lmposed by the  shock, and a 
large decrease i n  the suction-surface  velocity  occurs in  the  region of 
the shock system (fig.  14) .  The boundary-layer growth through the ent i re  
shock  system (region 2) is very  rapid and contributes  sizably  to the 
profile  losses.  Since  the peak suction-surface Mach numbers were 

- 



computed t o  be 1.5. or greater for most of the blade elements examined, 
separation of the boundary layer   a t  the shock is almost inevit&le 
(ref.  22). 

In  the third region, w h i c h  i s  downstream of the shock system, a 
subsonic diffusion  generally  occurs. In some cases  there might be  local 
expansion above Mach 1.0 and subsequent  compression  shocks at the  point 
of reattachment  followed by subsonic  diffusion. In  other  cases, the 
subsonic W f u s i o n  may be f r o m  Mach 1.0 d i r ec t ly   t o  the discharge veloc- 
i t y .   In   e i t he r  case the boundary layer  at the beginning of region 3 is 
i n  a very poor condition to   sus ta in  further diffusion,  in that it ei ther  
has been or  i s  i n  a separated  condition, and the  continual  adverse  pres- 
sure gradient may be expected t o  cause sizable  losses. me re la t ive  
magnitude of these losses as compared with  those of the second region is 
further obscured by the   fac t  that no published  experimental  data  are 
available f o r  the p ro f i l e  loss encountered i n  the case of boundqy-layer - 
shock in te rac t ion   in  a f i e l d  s i m i l e z  t o  that described. 

The velocity  profile over the blade suction surface is shown sche- 
matic- in   f igure  =(a) fo r  the type of flow described. The suction- 
surface  velocity  in the first region is increasing  rapidly t o  some rather 
high  value at point B. In  the second  region, the  suction-surface  velocity 
drops rapidly; this is the  effect  of the shock and the shock - boundary- 
layer  interaction. A t  point C, the  velocit  i s  approximately  sonic. 
Then, if loca l  expansion occurs ( f ig .  15 (a)J, the velocity  increases 
slightly to  point D, and a compression  shock follows t o  the end of region 
2 at Dl. The suction-surface  velocity  then  continues ta decrease by 
subsonic  diffusion to   po in t  E at the trailing edge of the blade. The 
other  case { i.e.,  without  local  reexpansion above sonic  velocity) is shown 
schematically in   f igure  15(b). In this case  the  velocity  decreases  in the 
region of the shock t o  near sonic  velocity, remains nearly  constant  for a 
short  distance, and then drops off again i n  the subsonic  diffusion  region. 

The velocity  profiles  afscussed  are  in  contrast  to the velocity pro- 
f i l e   u s u a l l ~  encountered at low r e l a t ive   i n l e t  Mach numbers , fo r  which 
the  suction-surface  velocity  increases  very  rapidly  to some high value 
near  the  leading edge  and then drops off gradually to  the  discharge  value 
at the   t r a i l i ng  edge of the blade (fig.  15(c)}. Some success in  corre- 
lating losses   in  the latter case has been  obtained by presuming that the 
losses were r e l a t e d   t o  the r a t i o  of the maximum suction-surface  velocity 
to the discharge  velocity. Such a corre la t ing   ra t io  probably worked 
reasonably  well  because the profile  losses were encountered mainly i n  
this gradual  diffusion from the m a x i m u m  to  the  discharge  velocity, and 
t h e   i n i t i a l  state of the boundwy layer does not  vary  greatly (ref. 1). 
At  high Mach numbers, there can be several  regions  in which profile losses 
are generated, and it may be that a simple veloci ty   ra t io  cannot be ex- 
pectedto  correlate  the profile  losses.  That is, the losses of region 2 
(fig.  14) may be re la ted  t o  8ome veloci ty   ra t io  or correlating  parameter 



and those of region -3 t o  some other  correlating  parameter.  In  addition, 
the  boundary-layer  conditions at the start of the diffusion  process may 
vary  considerably with cascade geometry for flaws with shock waves. For 
this reason,  too, a simple veloci ty   ra t io  may not  describe  accurately the 
boundary-layer growth and profile  losses  for  transonic blade elements. 

Study of Suction-Surface  Diffusion  Parameters 

In  this prel iminary analysis  the  profile Loss has been defined as 
the difference between the measured over-all 106s and the estimated shock 
loss. This profile loss i s  plotted  against  the  dif'fusion  factor D i n  
figures 10(b) and l l (b) ;  and, since  the data fa l l  generally wi th in  the 
range of previous  experience, it is presumed that es t imtfon  of shock 
losses was reasonably good. However, the flow  conditions are very dif- 
ferent  from  those of the flow model for which the afffusion factor  WBB 
established. As  a natural  extension of the computations aP peak suction- 
surface Mach nmiers  %, it i s  possible   to  compute other  suction-surface 
diffusion  parameters.  Several of the parameters will be considered in 
correlating  profile  losses. . . " .  . . .. 

6 
01 

" - 

The estimated  profile  losses for the blade-element data shown i n  
table II are plotted  against the r a t i o  of calculated peak suction-surface 
veloci ty   to   discharge  re la t ive  veloci ty   in   f igure 16. !The data far the 
t i p  region w e  given in  figure 16(a) and f o r  midpassage i n  figure 16 (b) . 
The profile loss seems to   increase  as   greater   ra t ios  of velocity me ob- f 

tained for the  tip-region data. The spread of the losses obtained is 
similar t o  that obtained  for  the  diffusion  factor D. A t  the  other radial 
positions the data do not  indicate any particular  trend of profile  losses 
with this r a t i o  of velocit ies Over the range of data available for 
maximum-effeciency loss. This, too, i s  similar  to  the plot of profile 
loss  against  diffusion  factor f a r  midpassage elements, - 

Another parameter  based on computed .peak velocity and the measured 
discharge  conditions is the static-pressure-rise  coefficient 
(p, - p,) /(Pi - ps) . The computed prof i le  losses are plotted against the 
static-pressure-rise  coefficient  in figure 17, and no particular  trends 
are  evident. These diffusion  pmameters depend on the estimated peak 
velocity on the blade  suction  surface. Also, an estimated shock loss 
subtracted from a t o t a l  Loss containing some experimental  inaccuracies was 
used t o  determine a prof i le  loss. Thus, the l& of correlation (Vs/Vi 
and (p, - ps)/(Pi - p,)) in this preliminary analysis should not completely 
discredit  these fundamental  parameters. 

The above-mentioned paranmeters, which were taken to be indicative of 
the diffusion along the blade suction  surface,  describe  the total W f u -  - 
sion from estimated peak veloci ty   to  the discharge  velocity. Tb.e idea 
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has been  advanced that  the flow velocity just behind the  point of sepa- 
ra t ion may be near  sonic. Thus, the  subsonic  Wfusion would be from 
approximately a Mach  number of 1.0 to  the  discharge  conditions. The ve- 
l oc i ty   r a t io  f o r  Mach number  of 1.0 t o  discharge  relative  velocity has 
been computed for these data and is plotted  against the estimated  profile 
loss  i n  figure 18. No particular t rend  in   prof i le  loss i s  obtained, pos- 
sibly as a result of the necessary  approximations and the fact tha t  this 
pazticular r a t i o  of veloci t ies  i s  only a part  of the  over-all  diffusion 
along the  suction  surface. It is of in t e re s t   t o  note that a major portion 
of the  velocity change is obtained i n  the region of the shock. The range 
of the   ra t io  of peak velocity t o  discharge  velocity V d V A  is  about 1.4 
t o  2.5 (fig.  16), whereas the r a t i o  of sonic  velocity t o  discharge  veloc- 
i t y  is from  about 0.9 t o  1.6 (fig. 18). Thus, the change in   veloci ty  
obtained i n  the subsonic  diffusion  region is relat ively small f o r  a l l  the 
data used i n  this study. 

- 

In  summary, several pazameters (including the diffusion  factor D] 

.A 
that are related  to  the  suction-surface  velocity  variations have been 
considered f o r  correlating  profile losses. The velocity r a t i o  for   the  

coefficient do not  afford a basis for  correlating  profile  losses.  The 

to   out le t   veloci ty  V,/Vi in  essentially  the same manner. Several  ex- 
planations  for  these  observations  can be given. All the parameters are 
based on the hypothesis that there is at least a first-order dependence 
of prof i le  losses on suction-surface  diffusion.  Wticulsrly  in  the 
presence of shock waves, other  factors  hock and boundmy-la er  inter-  
actions,   init ial   condition of the boundary layer, blade shape31 may be as 
important as the diffusion.  In  addition, the profi le  loss is approximate 
because of the errors encountered i n  measuring over-all   losses and because 
the shock losses were obtained by an approximate method. The values of 
the  diffusion  parameters themselves depend  on an estimate of such terms 
as the peak veloci t ies  determined from  two-dimensional solutions. Fur- 
thermore, it i s  recognized that the data selected may not  correspond t o  
the  condition for minimum profile  losses.  Thus, f o r  a study of the pro- 
f i l e  losses it may be better t o  use the data obtained over a range of 
operating  conditions  rather  than  the maximum-element-eff iciency data. 
However, at present  there is  no simplified method f o r  estimating shock- 
loss vaxiation over a r a g e  of operating  conditions. 

$ 
.n subsonic  portion of the  diffusion  process and the static-pressure-rise 
7 
0 profile  losses varied with diffusion  factor D and the   r a t io  of maximum u 

- 

The following summation can be made from the preliminary  study of 
losses of supersonic blade elements of transonic-compressar rotors:  
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1. The shock configuration existing i n  transonic-ccmrpressor rotors  
consists of a bow  wave and a passage shock, the shape and location of 
the shock waves depending on .the  operating  conditions. 

2. A simple model  of this shock configuration was used t o  estimate 
passage shock losses at maximum element efficiency. The losses associ- 
ated with the passage shock generally from 0.35 t o  0.55 of the over- 
all. measured losses  for  the  transonic compressors considered. 

3. A reasonable  approximation of the passage shock loss can be ob- 
* 
w 
t: 
0, tained from the average of the peak suction-suifme Mach number upstream 

of the shock and the re la t ive  inlet Mach number. Prandtl-Meyer expanaion 
equations were used t o  compute the peak suction-surface Mach number. 

4. I n  many cases computed suction-surface Mach numbers were high 
for  the  double-circular-arc  airfoils  considered. Therefore, i n  many of 
the transonic compressors tes ted  to   date ,  a separation of the  suction- 
surface boundmy layer undoubtedly occurred as a result of the  interaction 
between the shock and boundary layer. 

5. Profile  losses, which are defined as the over-all  measured loss 
minus the computed shock loss, are of about the same order of magnitude 
as obtained  in  investigations  in which shock losses were mt encountered. 

6. Several flow parameters indicative of the magnitude of diffusion 
on the  blade  suction surface were considered.  kwever, no consistent 
variation of prof i le  loss was obtained with these parameters. Whereas 
the diffusion  factor D is no-t ent i re ly  adequate fo r  the flow mob1 Kith 
shocks, the profile  losses for the transonic-cour~resmr  data used i n  this 
study f a l l  reasonably  well  within  the loss band previously  obtained for 
subsonic-compressor rotors.  

- 

Lewis Flight  Propulsion Laboratory 
National Advisory Committee fo r  Aeronautics 

Cleveland, Ohio, January 31, 1957 
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C 

D 

h 

i 

P 

blade chord, in.  

-fusion factor  (ref. 10) 

height of streamline  deflection from bow wave t o  blade leading edge 

incidence angle,  angle between relat ive  inlet-ai r   d i rect ion and 
tangent t o  blade mean camber line at leading edge, deg 

incidence-  angle,  angle between re la t ive   in le t -a i r   d i rec t ion  and 
tangent to suction  surface of blade leading edge, deg 

peak suction-surface Mach number 

r e l a t ive   i n l e t  Mach  number 

t o t a l  pressure,  lb/sq ft 

static  pressure,  lb/sq ft 

static  pressure at peak suction-surface Mach number, lb/sq ft 

R, 

RS 

r2e 

S 

t 

v 

dynamic pressure 

radius of curvature of mean camber l ine,   in .  

radius  of curvature of blade suction surface, in. 
blade  leading-edge radius,  in.  

blade spacing, in. 

blade. thickness,  in. 

r o t o r   t i p  speed, f t /sec 

air velocity,   f t /sec 

air angle,  angle between air velocity and axial direction, deg 

blade-chord  angle,  angle between blade  chord and axial direction, 
k g  
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adiabatic  efficiency 

r a t i o  of temperature t o  NACA standard sea-level  temperature 

blade  angle,  angle between tangent t o  blade mean  cauiber l i ne  snd 
axial direction, deg 

Prandtl-Meyer  expansion angle  (ref. 20) 

angle between tangent  to blade suction  surface a t  peak Mach number 
point and chord, deg . .  

. .  . .  --*- 
cr, w m 

angle between tangent t o  blade suction  surface at peak Mach  number 
point and axial .direction, deg 

angle used i n  f i g .  ZO, deg 

blade  solidity,   ratio of chord t o  spacing 

camber angle, X - X deg 

total-pressure-loss  coefficient,  over-all-measured Loss 

total-pressure-loss  coefficient,  calculated shock loss 

1 2’ 

Subscrigts: 

a 

b 

id  

max 

S 

0 

1 

2 

upstream of passage shock 

downstream of passage shock 

ideal 

maximum 

suction surface 

at Mach number 1.0 

rotor   inlet  

rotor   out le t  

Superscripts : 

I relative t o   r o t o r  

- mass-averaged value 
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. APPENDM B 

CALCULATION OF PASSAGE SHOCK LOSSES 

Figure 19, which presents  the geometry of double-circular-arc afr- 
f o i l s ,  i l l u s t r a t e s  the principles  involved  in computing the peak suction- 
surface Mach  number % f o r  any blade  section of known geometry. The 
information  necessary for  the  calculation i s  the in le t   re la t ive  Mach 
number q, the in l e t   r e l a t ive  air direction 8 '  and the point I' I at 
which the passage shock wave intersects the suctlon surface. With point 
f' known, the  flow  direction  (equivalent to the suction-surface  direc- 
t ion  Ez) at th i s  point can be found from the blade geometry or  coordi- 
nates. Then, the calculation of peak suction-surface Mach number in- 
volves the use of the tables  of reference 20, which give  values of  the 
Prandtl-Meyer  expansion angle v as a function  of Mach number. The 
method i s  as follows : 

1-? 

(1) Determine v the Prdt l -Meyer  expansion  angle for the inlet 1' 
re la t ive  Mach  number Mi. (This s tep   res t r ic t s   the  method to blade ele- 
ments with an i n l e t   r e l a t ive  M a c h  number greater than or equal to 1.0.) 

(2) Compute the amount  of supersonic  turning AV, w h i c h  i s  defined 
as - & z *  

- t 3) Find the FYandtl-Meyer angle for the flow at the passage shock 
wave point f * ) : 

(4) The peak suction-surface Mach number is the Mach  number i n  
the tables  {ref. 20) which corresponds t o  'A. 

The shock-loss coefficient is computed f r o m  

- where {F</FA) is the normal-shock recovery factor  determined f o r  a Mach 
number equal to the average of the peak suction-surface Mach  number MA 
and the  inlet   re la t ive Mach number Y* 
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For double-circular-mc airfoils, the suction-surface a r e c t i o n  E 
can be found from the  dietance x (fig. 19), which i s  the distance be- 
tween the shock intersection and the center of the leading-edge rEbdiu8. 
According Lo figure 19, 

- 

where 

and 

. .  

c' = c - 
. .  " . .  

'6 - =  
2 2 arc  tan 

s i n  - 
2 

Then, 

and equation (Bl) becomes 

The location of the intersection of the passage shock with the suc- 
tion surface (point f '1 is not known for the rotor data considered herein. 
Consequently,  an  assumption is required. Point f ' was located for double- 
circular-arc airfoils by the  construction sham i n  figure 20. The straight 
l i ne  which intersects  the suction sur face  at point f' passes through the 
leading edge of the adjacent  blade aad is normal t o  the midchannel stream- 
l ine .  The midchannel stresmline is assumed t o  be a blade mean camber line 
positioned midwaJr between two blades. As shown i n  figure 20, these assump- 
t ions   l ead   to  the follow-ing equation f o r  the distance x: 
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. 
where 

- 
$5 = 1 + sin 22 cot 2 - cos 22 cp 

s i n  5 s i n  
2 = arc   tan 

a '  + cos x1 s in  - 

and 

Thus, .% can  be  determined from equation (E), and with  equations (B3) 

and (E) the Prandtl-Meyer  expansion angle v i  for the peak suction- 
surface Mach  number % can be found. 

7j The location of point f by this method is arbitrary; however, the 
u approach gives a systematic  study of shock losses i n  the compressors 0 

considered  in this report. Two other systematic definit ions of the shock 
location were included i n  'this study. One definit ion w a s  based on a l ine  
drawn perpendicular t o  the chord line;  the  other method located  point f x  
along a l ine  of minim  d is tance  between two adjacent  biades. The shock 
losses determined from each of these definit ions were not substantially 
different from the ones reported  herein. 
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I 
C T Rotor Refer- Chord, 

C.  in. 

- 
2.27 
2.25 

2.27 
2.25 

- 

so l id-  
1tl. 

a 

- 
1.04 
1 .06 

0.88 
- 

. a9 

radius. Hub-tlp LeaUlng- Number Tip Blade- Ln. radlua r a t i o  edge of design element 
radius, blades position, 

; Cutlet Inlet Cutlet rter - , passage 
outer 
W a l l  * 

;pdw$ in. . ft/oea 

percent 

7.0 0.50 0.572 0.015 19 lo00 13 
18 

Inlet 

- 
7.0 
- 
7.0 7.0 

IO250  10.572 I 0.016 1 16 I I lS 
18 

7.0 

- 
7.0 

7 . 0  0.50 0.572 10.015 l2 loo0 1J 
18 

7.0 0.491 0.536 IO.010 23 1120 10 
I ti:; 1 O:%- 

51.95 0.05 I E 1 5 a n d  
6 

8.68 

8.68 

- 
8.0 

3.18 1 1.29 22:; 
3.17 1-32 

. -  

0.048 .050 .- 
8.68 0.625 0.60 0.015 22 loo0 11 

17 

7.75 0.500 0.m 0.010 27 1sM 11 
18 
50 

IT I 1.0381 10.7 
1.006 11.3 

1.255 10.4 

0.- . a55 
.a4 

" I1 35.85 
32.93 
24.78 

47.6 
46.3 

47.6 
46.5 

" - 

. " 

0 . O N  .os3 .OM) 
.os5 
.os9 

0.061 
.a 

0.061 .om 

.-  ~ 

I T  8.0 7.8 0.500 0.611 0.015 I I I I = r 2 7  f 
9 .o 
- 
9.0 
- 
9 .o 

9.0 0.m 0.556 0.01D ss loo0 10 
16 

9.0 0.500 0.558 0.010 28 1000 10 
16 

J 8 %nd 
1 4  

R 1 4  

L 14 

n 9 

n 2 l  
0 2s 

P 25 

Q 15 

R 1 5  

9 15 

1.50 

9.0 0.500 0.556 0.010 22 10 
16 

- 7.0 

7.0 

10.0 
- 

0.0 0.50 0.57 0.015 23 1100 
25 
16 

33 

10.0 0.0 0.62 0.675 0.015 27 1100 
25 
.La 
33 
90 

10.0 

LO.0 - 
L0.0 
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TABm 11- - SUMMARY DATA FOR TILAHSONIC ROPORS 

W 
rn 
-8 
M 

1 1 1 1 1 1 

1.om 
1.070 
1.067 

1.417 
1.4a 
1.459 

0.093 0.561 1.m 1.329 0 
-103 -600 2.03 1" 
.088 -695 2.03 1.101 

0"2 
.0b4 .cK5 

0.110 
-101 
.lis 

0.077 

-068 
-073 

- 

- 

1 .om 
1.049 
1.045 

1.428 
1.489 
1.467 

0.578 

0.539 
.52 

1.093 
1.043 
1 am. 

1.343 
1.344 
1.378 

1.878 0.072 0.396 

::E I :x; I :% 
1-074 
1.073 
1.059 

1.351 
1.360 
1.403 

0.788 0.144 0.404 1 33 -2.31 
407 2 09 -2.1s -= -817 I :E I :- 12!741-1.50 

1.107 
l.lol 
1.089 

1.222 
1.W 
1.a -666 

LOCn 
1.081 
1.m 

1.- 

1.148 
1-077 
1.061 
1.040 

1.170 
1.155 
1.148 
1.038 
1.056 
1.018 

1.14s 
1.128 
1.120 
1.olS 
1.033 

1.216 
1.206 
1J92 
1.197 
1.128 
1.U7 
1.108 
1.082 

l-lE=J 

1.186 

1.104 
1.092 
1.084 
1.074 

1 . m  

1.1m 
1.1m 

I 

0.055 0.551 1.920  1.291 D 
.077  -069 1 .W -624 l 2 . l  2.00  11.381 1.345 I 
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TABLE II. .- Concluded. SU-Y DATA FOR TRANSONIC ROTORS - 
uotion- 
wraoe 
Isoh 
mber, 

- 
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2.153 
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1.952 

2.027 
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2.045 
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1.- 

- 
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l . O E 4  1.509 0.816 0.113 0.405 3.0 -4.15 2.16 
~ ~ .. - 
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. 

Supersonic 
upstream flow - 

Bow  waves / Blade  stagger 

Figure 1. - Shock-wave  configuration  in  cascade of airfoils at 
supersonic  inlet  relative  Mach  number. 

Stagnation 

"" 

Sonic  line 

a / 
"""b 0 -  

Figure 2. - Details of flow field  at  inlet of cascade of airfoils 
operated with supersonic inlet relative  Mach number. 

line 
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Wake - 
- Blade spacing -4 
Distance along measuring station 

Figure 3. - Variatian of t o t a l  pressure damstreem of low-speed cascade. 
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n 
I 
3 
3 

/ 

Measuring s ta t ion \ 

(a)  Variation caused by passage shock. 
- 

A I Inlet I 

I c 
Distance along measuring station 

(b) Variation caused by pssage  shock and v i a c o u ~  effects. 

Figure 4. - Circumferential  variation of relative total pressure 
at outlet  of blade element operating vith supersonic i n l e t  
relative Mach nwnbers. 



34 - NACA RM E57A30 

- -  

(3) Moderate back  pressure (point B near peak 
eff ic iency ) . 

( c )  High back prssgure (point C ) . 
- .  

Figure 5. - Variation of  passage  shock with back preseure 
(operation at supersonic   inlet   re lk6ive .Mach nuinber ) . 
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A 

I 
A' 

~ 

Incidence angle, i 

(a) Variation with incidence m e .  

I 
Increasing back pressure 

(b) Variatim with back' pressure. 

figure 6. - Typical m e a s u r e d .  variations of blade- 
element losses  with incidence angle and back 
pressure for operation with supersonic  inlet 
relative Mach number. 

35 
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I I 
A B 

I i  
(EL) Bow-wave lossee. 

I 
I 

Increasing back preesure 

(d) Over-all loss. 

(e) Shock-wave configurations. 

Weight flow 

"1 A 

(f) Over-all performance 
characteristics. 

Figure 7. - Blade-element loss variations deduced frm f lov model. __ 
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0 
0 

Figure 8. - Passage  shock-wave approximation f o r  
estimating shock-loss levels. 
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(a) Tip  section, 13 percent or le60 of passage height from outer w a l l .  

1.2 

.8 

0 E-18 a 0-33 
.4 

VA 
a H-50 * P-16 - 
D 1-20 v P-25 
0 1-40 P P-33 
0 1-50 Q P-50 - 
0 1-60 

4 

I I 
0 .1 .2 .3 .4 .5 

Total-pressure-loss coefficient, CO 
(b) Blade-element sections located 16 to 60 percent of passage height 

f r o m  outer wall. 
Figure 9. - Ratio of computed paesage shock 1068 to measured over-all 

loss for b m e  elements. 
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.4 

19 

0 

NACA RM E V A 3 0  

Diffusion factor, D 

(b) Profile loss. 

Figure 11. - Variation of over-all and profile 1066 with diffusion 
factor for several transonic-cwnpressor  rotors at blade-element 
sections located 16 to 60 percent of passage  height fran outer 
wall. 



CD 
I 
0 u 

NACA RM E57A30 - 

i.0 1.2 1.4 1.6 1.8 2.0 2.2 
Peak suction-surface k h  nmiber, % 

W e  12. - Computed  shock  loss and S U P ~ ~ S O ~ ~ C  turning variation with 
peak suction-surface  Mach mniber. 

41 
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(a) Separation of boundary layer. 

(b) Separation with reattachment. 

Figure 13. - Shock - boundary- 
layer interact ion.  
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Figure 14. - TKO forms of shock - boundazy-layer 
interaction on a compressor blade surface. 

* 
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(a) Shock - boundary-layer interaction xith expansion 
downstream followed by compression  shock. 

(b) Shock - boundary-layer interaction w i t h  subsonic 
diffusion. 

(c)  Subsonic velocity  profile . 
Figure 15. - Campressor blade  suction-surface velocity profiles. 

" . 
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0 
0 

(a) Tip section, 13 percent or Less of passage height from outer wall. 
0 

(b) Blade-element sections located 16 t o  60 percent of passage height from 
outer wall. 

Figure 16. - Variation of estimated profile loss with ratio of peak suction-surface 
t o  discharge velocity. 
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(a) TIP section, 13 percent or lees of passage height 
8 frm outer wall. 
rn 

ri 
0" 

.2 .3 .4 .5 .6. .7 

Calculated  etatic-pressure-rise  coefficient, 
(P2 - PSI 
p i  - P, 

(b) Blade-eleinent  sections  located 16 to 60 percent of 
passage height from auter -11. 

. Figure 17. - Variation of estimated profile loss with 
static-preseure-rise coefficient. 



NACA RM E57A30 
- 
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47 

m 

.-I 
0 
op (a) Tip  section, 13 percent or l ess  of passage height from 

outer wall. . .  
& .2 

& 

rl 

Gl 

.1 

0 

- .1 
.6 1.0 1.4 1.8 

(b) Blade-element sections  located 16 t o  60 percent of 
passage height from outer  wall. . .  

Figure 18. - Variation of profile  losses with velocity  ratio 
for subsonic diffusion. 
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Parallel to chord line 

Figure 19. - Circular-arc-blade geometry. 
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Figure 20. - Shock lorwrtlon and blade geometry. 
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